Skip to main content

computational-chemistry

Mentors and Regional Facilitators
Name Region Skills Interests
Anita Orendt Campus Champions, RMACC
Alexander Pacheco
Ben Lynch Campus Champions
Christopher Bl… Campus Champions
Balamurugan Desinghu ACCESS CSSN, Campus Champions, CAREERS, Northeast
diana Trotman CAREERS
Edwin Posada Campus Champions
Yu-Chieh Chi Campus Champions
Jacob Fosso Tande Campus Champions
Jonathan Lyon At-Large, Campus Champions, Kentucky, ACCESS CSSN
Jason Key Campus Champions
Lonnie Crosby Campus Champions
Lisa Perez SWEETER
Justin Oelgoetz Campus Champions
Mark Perri Campus Champions
Paul Rulis Campus Champions
Russell Hofmann ACCESS CSSN
Sean Anderson Campus Champions
Xiaoqin Huang ACCESS CSSN
Spencer Pruitt Northeast
Swabir Silayi Campus Champions
Torey Battelle Campus Champions
Thomas Cheatham Campus Champions, RMACC
Blog Entries
There are no Blog Entries associated with this topic.

Affinity Groups

There are no Affinity Groups associated with this topic. View All Affinity Groups.

Announcements

Title Date
Ookami Webinar 02/14/24
Open Call: Minisymposia for PASC24 10/05/23

Upcoming Events & Trainings

No events or trainings are currently scheduled.

Topics from Ask.CI

Loading topics from Ask.CI ...

Engagements

Exploring Small Metal Doped Magnesium Hydride Clusters for Hydrogen Storage Materials
Murray State University

Solid metal hydrides are an attractive candidates for hydrogen storage materials. Magnesium has the benefit of being inexpensive, abundant, and non-toxic. However, the application of magnesium hydrides is limited by the hydrogen sorption kinetics. Doping magnesium hydrides with transition metal atoms improves this downfall, but much is still unknown about the process or the best choice of dopant type and concentration.

In this position, the student will study magnesium hydride clusters doped with early transition metals (e.g., Ti and V) as model systems for real world hydrogen storage materials.  Specifically, we will search each cluster's potential energy surface for local and global minima and explore the relationship of cluster size and dopant concentration on different properties.  The results from this investigation will then be compared with related cluster systems.

The student will begin by performing a literature search for this system, which will allow the student to pick an appropriate level of theory to conduct this investigation.  This level will be chosen by performing calculations on the MgM, MgH, and MH (M = Ti and V) diatomic species (and select other sizes based on the results of the literature search) and comparing the predictions with experimentally determined spectroscopic data (e.g., bond length, stretching frequency, etc.).  The student will then perform theoretical chemistry calculations using the Gaussian 16 and NBO 7 programs on the EXPANSE cluster housed at the San Diego Supercomputing Center (SDSC) through ACCESS allocation CHE-130094.  First, this student will generate candidate structures for each cluster size and composition using two global optimization procedures.  One program utilizes the artificial bee colony algorithm, whereas the second basin hoping program is written and compiled in-house using Fortran code. Additional structures will be generated by hand from our prior knowledge.  All candidate structures will then be further optimized by the student at the appropriate level determined at the start of the semester.  Higher level (e.g., double hybrid density functional theory) calculations will also be performed as further confirmation of the predicted results. Various results will be visualized with the Avogadro, Gabedit, and Gaussview programs on local machines. 

Status: In Progress
Developing Computational Labs for Upper Level Physical Chemistry II Course
Bridgewater State University

Out of all the upper level chemistry courses, physical chemistry is the only course that provides an in-depth insight into the fundamental principles underpinning the concepts taught in various sub-disciplines of chemistry. Further, physical chemistry provides a connection between microscopic and macroscopic worlds of chemistry through mathematical models and experimental methods to test the validity of those models. Therefore, computational techniques are a perfect vehicle to teach content of physical chemistry course to undergraduate students. Additionally, American Chemical Society recommends computational chemistry to be incorporated into undergraduate chemistry curriculum. At Bridgewater State University (BSU) physical chemistry is a two-semester course referred to as 'physical chemistry I' and 'physical chemistry II'. While the overarching goal is to develop computational experiments (referred to as 'dry-labs'), project proposed here focuses on designing and developing dry labs for 'Physical Chemistry II' course at BSU. The inherently theoretical nature of this course along with its connection to wide range of spectroscopic techniques commonly used by chemists and physicists makes this course a perfect choice for assessing BSU students' reception to the idea of dry labs. It should be noted that there are no computational experiments in the current physical chemistry curriculum (both I and II) at BSU. The proposed project focuses on developing 4 - 6 computational experiments to be introduced (in spring 2018) as either stand-alone dry-lab experiments or accompany currently existing experiments. These dry labs will be developed on Gaussian 09 platform, which is currently installed on C3DDB server at MGHPCC. Finally, I also expect to make these experiments available to other New England instructors teaching physical chemistry II or equivalent course interested in incorporating computational chemistry into their curriculum.

Status: Complete

People with Expertise

Lisa Perez

Texas A&M University

Programs

SWEETER

Roles

mentor, research computing facilitator, Affinity Group Leader

Lisa Perez photo

Expertise

Lenore Martin

University of Rhoide Island

Programs

CAREERS

Roles

researcher/educator

Lenore in office

Expertise

Justin Oelgoetz

Austin Peay State University

Programs

Campus Champions

Roles

mentor, researcher/educator, research computing facilitator

Placeholder headshot

Expertise

People with Interest

Rocio Lavado

Programs

ACCESS CSSN

Roles

student-facilitator

HEADSHOT

Interests

Torey Battelle

Arizona State University-Tempe

Programs

Campus Champions

Roles

mentor, regional facilitator, research computing facilitator, Affinity Group Leader, regional admin, CCMNet PM

tore8arch.png

Interests

Alexandra Lamtyugina

University of Chicago

Programs

ACCESS CSSN

Roles

student-facilitator

Photo of Alexandra Lamtyugina

Interests